

National Aeronautics and
Space Administration

NASA Technical Memorandum 104315

Flight Simulation Software
at NASA Dryden Flight
Research Center

Ken A. Norlin

October 1995

National Aeronautics and
Space Administration

Dryden Flight Research Center
Edwards, California 93523-0273

1995

NASA Technical Memorandum 104315

Flight Simulation Software
at NASA Dryden Flight
Research Center

Ken A. Norlin

NASA Dryden Flight Research Center
Edwards, California

FLIGHT SIMULATION SOFTWARE AT
NASA DRYDEN FLIGHT RESEARCH CENTER

Ken A. Norlin*

NASA Dryden Flight Research Center
Edwards, California
Abstract

The NASA Dryden Flight Research Center has
developed a versatile simulation software package that is
applicable to a broad range of fixed-wing aircraft. This
package has evolved in support of a variety of flight
research programs. The structure is designed to be
flexible enough for use in batch-mode, real-time pilot-in-
the-loop, and flight hardware-in-the-loop simulation.
Current simulations operate on UNIX-based platforms
and are coded with a FORTRAN shell and C support
routines. This paper discusses the features of the
simulation software design and some basic model
development techniques. The key capabilities that have
been included in the simulation are described. The
NASA Dryden simulation software is in use at other
NASA centers, within industry, and at several
universities. The straightforward but flexible design of
this well-validated package makes it especially useful in
an engineering environment.

Introduction

Flight simulation has a vital role in the flight research
performed at the NASA Dryden Flight Research Center.
Simulation benefits all phases of a flight research
program: the early conceptual and design phase, systems
design and testing, and flight test support and envelope
expansion.

A simulation laboratory was established at NASA
Dryden in 1957 to support the X-1B flight program.1

Capability expanded and experience increased while
*Aerospace Engineer. Member AIAA
Copyright 1995 by the American Institute of Aeronautics and

Astronautics, Inc. No copyright is asserted in the United States under
Title 17, U.S. Code. The U.S. Government has a royalty-free license to
exercise all rights under the copyright claimed herein for Governmental
purposes. All other rights are reserved by the copyright owner.

1

supporting a variety of unique and challenging flight
research programs, including the X-15 aircraft and lifting
body vehicles. These early simulations used analog
computers and varying degrees of flight hardware in the
loop.

The first all-digital simulation at NASA Dryden was
developed in 1970 for the 37.5 percent–scale unpowered
F-15 Remotely Piloted Research Vehicle (subsequently
known as the Spin Research Vehicle). A standard
simulation structure was established in 1975. Since then,
the simulation software has steadily evolved into a
versatile and flexible engineering tool. The simulation
capability now forms the backbone of the NASA Dryden
Integrated Test Facility that opened in 1992 to support
ground and flight testing of advanced research aircraft.2

The flight research environment at NASA Dryden
relies extensively on simulation to support development,
modifications, and verification and validation of aircraft
control laws. In addition, simulation is used for mission
planning, safety-of-flight analysis, pilot training, and
evaluation of new vehicle concepts. The simulation for
any aircraft continually evolves as the flight research
program matures. Changes to the vehicle definition,
revisions to the control laws, and updates from the most
recent flight test results are incorporated into the
simulation as required.

The flight vehicles simulated are usually unique,
uniquely modified, or conceptual fixed-wing aircraft.
Vehicle types range from small subscale models to large
transport aircraft, from sailplanes to hypersonic and
orbital vehicles, and from benign to highly agile, high-
performance fighters. Some of the currently supported
projects include the X-31, X-33, X-34, F-18 HARV, F-15
ACTIVE, F-16XL SLFC, F-18 SRA, Perseus, and APEX
programs.

The small simulation staff, large number of projects,
and frequent model updates (based on flight results) have

driven development of a versatile standard simulation
structure. This structure, with both flat- and oblate-Earth
versions, has successfully supported more than 50
different aircraft. The software is used in batch-mode,
real-time pilot-in-the-loop, and flight hardware-in-the-
loop operation.

The goal of the simulation group is to provide a high-
fidelity simulation that is exceptionally capable, flexible,
and responsive to the needs of the researchers. These
simulations are not production training simulations; they
are engineering simulations used in a research
environment. Fixed-base cockpits are used with modest
visuals. Every simulation is similar in terms of software
structure, user interface, naming conventions, operating
characteristics, and key capabilities. These similarities
allow users and developers to be immediately familiar
with the simulation regardless of which project they are
supporting. The end result is a highly efficient, effective,
and productive simulation environment. This paper
discusses the simulation software structure, some basic
model development techniques, and several capabilities
and features.

Nomenclature

ACTIVE Advanced Control Technology for Integrated
Vehicles

GRAM Global Reference Atmospheric Model

GUI graphical user interface

HARV High Alpha Research Vehicle

NASP National Aerospace Plane

SES Simulation Electric Stick

SLFC Supersonic Laminar Flow Control

SRA Systems Research Aircraft

V&V verification and validation

A stability matrix

B control matrix

C state observation matrix

D control observation matrix

u control vector

x state vector

state derivative vector

y output vector

Software Design

The software design philosophy is to be responsive to
the needs of the researchers by including as much
capability and flexibility as possible in the basic
simulation structure. Portability of the software has been
proven across numerous platforms as upgrades are made
to take advantage of increasing computer performance.
Current real-time simulations operate on multiprocessor
UNIX-based computers, and batch simulations run on
desktop workstations.

The simulation software primarily uses FORTRAN 77
and C languages, but the capability to interface with Ada
routines also exists. The majority of the code is written
in FORTRAN. This FORTRAN code includes the
aircraft models, equations of motion, integration, table
look-ups, initialization, and display generation routines.
C is used for the graphical user interface (GUI) and
system specific routines such as memory mapping,
priority boosting, and interrupt handlers. In addition, C is
used for the graphics and distributed system functions
that are described in the “Distributed Systems”
subsection.

FORTRAN continues to be used because of the
tremendous amount of FORTRAN code retained from
earlier simulation efforts. The balance between
FORTRAN and C is shifting toward C as older code
becomes obsolete. If onboard aircraft software is written
in Ada, then that Ada code is also integrated into a
simulation rather than recoding in another language.
UNIX “makefiles” are used to compile the simulation.
The use of “makefiles” allows minor updates to be made
in less than 5 minutes.

Any real-time simulation structure logically lends
itself to splitting the user interface from the real-time
loop. The NASA Dryden simulation is no different. The
simulation is primarily comprised of two main tasks: the
background executive and the real-time loop (fig. 1).

The main simulation program is referred to as the
background executive. This FORTRAN task is used to
initialize the simulation database and provide a display
and command line interface for monitoring and
controlling the simulation. Once this main program has
performed its initialization function, it starts the real-
time loop as a separate task. The real-time loop may
contain one or more programs run in parallel. This
parallelism is used as needed to meet frame-time
requirements. For batch mode, only one pseudoreal-time
loop exists that runs the models in series.

ẋ

2

Figure 1. Simulation diagram.

Background
 executive

Real-time
 loop

Initialization

Display current
page

Check for user
command

Make updates
to common

 Initialize
interrupts

Pilot inputs;
sensor information

Control surface
commands

Aircraft states

Surface positions;
aircraft states

Throttle positions;
aircraft states

Forces and
moments

Integrate
aircraft states

Equations of
motion

Engine model

Aerodynamic
model

Actuator
dynamics

Control law
computations

Model aircraft
sensors

Input pilot
commands

Aircraft states and
derivatives

Shared

common-

block

information

Start
real-time loop

950227
These multiple programs communicate through shared
FORTRAN common blocks. Although common-block
sharing between separate programs is nonstandard
FORTRAN, most of the UNIX-based machines tested by
NASA Dryden support this scheme using some
combination of compiler and linker options.

Sharing common blocks between tasks provides an
extremely flexible simulation environment. All flags,
switches, data tables, intermediate variables, and any
other information that might prove useful is placed in
FORTRAN common blocks. The high-priority real-time
loop runs at its required frame rate and simply uses the

values in this common-block region. Meanwhile, the
background task runs at a slower rate and provides an
interactive interface with the user to monitor and modify
the common-block information.

An additional benefit of structuring the code with
shared common blocks is the ease with which simulation
variable information can be generated and accessed. All
the common blocks that are to be shared are put into one
or more common-block files. These files are then
included in the declaration region of the main
background and real-time FORTRAN programs.
3

A simple common-block parser program has been
created to read these common-block files and generate
variable list and variable address files. The variable list
file is read by the background executive during
initialization and includes the variable name, type, byte
size, and array dimension. The background executive
performs a FORTRAN “INCLUDE” of the variable
address file to determine the variable addresses at the

time of the run. All the variable information is then
stored in a common block.

Figure 2 shows the process for variable list generation
and implementation in the background executive. This
process is mechanized in the simulation “makefiles” to
run automatically whenever the common-block files are
modified.
4

Figure 2. Variable list generation and implementation.

 -
 -
COMMON /COMBLK/ TABLE(10),INDX,RATIO
REAL*8 T,P,Q,R,V,ALP,BTA,THA,PHI,PSI,H,X,Y
COMMON /DRVOUT/ T,P,Q,R,V.ALP,BTA,THA,PHI,PSI,H,X,Y
 TDOT,PDOT,QDOT,RDOT,VDOT,ALPDOT,BTADOT,
 THADOT,PHIDOT,PSIDOT,HDOT,XDOT,YDOT
 -
 -

 -
 -
LSTADR(1) = LOC(TABLE)
LSTADR(2) = LOC(INDX)
LSTADR(3) = LOC(RATIO)
LSTADR(4) = LOC(T)
LSTADR(5) = LOC(P)
LSTADR(6) = LOC(Q)
LSTADR(7) = LOC(R)
LSTADR(8) = LOC(V)
 -
 -

 -
 - /COMBLK/
TABLE R 4 10
INDX I 4 1
RATIO R 4 1
 /DRVOUT/
T R 8 1
P R 8 1
Q R 8 1
R R 8 1
V R 8 1
 -
 -

 PROGRAM BGMAIN
C
C....Simulation Background Executive Program
C
 INCLUDE 'SIMCOM'
C
C....Read variable list file.
C
 CALL LISTIN('Data/varlist.dat')
C
C....Determine variable addresses.
C
 INCLUDE 'Data/address.inc'
C
 -
 -

Common-block
 files

File: varlist.dat File: address.inc

File: bgmain.f

Program MVAR:
Common-block parser

File: SIMCOM

950228

Background Executive

The purpose of the background executive is to provide
for simulation initialization, control, and display. The
background executive includes many features that
enhance its utility and flexibility, such as data file
reinitialization during run time, command line interface
with scripts, interactive display pages, and easy access to
all variables.

When the background executive is first started, it
initializes the data in the shared common-block region.
The initial conditions, aircraft geometry, and mass
properties are read from data files. All the tables that
comprise the simulation database for the various models
are also read at this time. Tables for the aerodynamic
coefficient data, engine model values, and control system
gains are normally grouped into separate data files.

Using data files to initialize this information allows the
initial setup and database to be updated without requiring
recompilation. In addition, all software switches, failure
flags, and control system modes are initialized at this
time. These switches are normally hard-wired in the
code. However, sets of logical and floating-point arrays
called user variables exist that are initialized from data
files and provide quick and flexible model modification
capability.

After the initialization is finished, the background
program starts the real-time program. From this point,
the background executive loops continuously on a time-
available basis. The current display page is updated on
the screen each frame of the loop, and the command line
is checked for user input.

The display interface uses a standard 24-line-by-80-
character output. These dimensions have been
maintained to retain code commonality with pre-UNIX
computer systems that are still in use. When these older
systems are phased out, the display output dimensions
can easily be modified. The display output buffer is
generated using FORTRAN code. However, on the
UNIX systems, a C-language GUI has been created to
display the information.

A flexible command line interface is provided for the
simulation user. Commands can be typed in using the
keyboard, or a script interface can be used. Scripts are
files that contain multiple simulation commands. These
script files can be read directly by the simulation instead
of requiring the user to type in all the commands.
Repeatability is thus guaranteed because typing errors
are prevented. Currently, nesting scripts to one level is

possible, allowing complex tasks to be performed by a
series of simple scripts.

Because all pertinent data is included in the shared
common region and can be accessed from this command
line interface, the simulation becomes a powerful tool for
the user. If a need exists to alter the center of gravity,
increase a control system gain, or modify the directional
stability term, the background executive provides a
mechanism to quickly make these modifications during a
simulation session while the program is running.

Dozens of interactive display pages exist that are
updated continually and contain virtually all parameters
of interest (fig. 3). The user can go from one display to
another by simply typing in the new display name. Each
display is designed for a specific purpose, and depending
on which display is currently being viewed, only certain
simulation options can be modified. Project-specific
displays and a set of generic displays are available to all
simulations. The project-specific displays usually
include customized pages for displaying and modifying
information regarding the various aircraft models.
Custom displays usually exist for the aerodynamic,
engine, and actuator models as well as the control
system.

Generic displays are available in every simulation.
One generic display is the initial condition page that
allows the user to vary the initial aircraft states. For
example, the user can select the initial airspeed, altitude,
or angle of attack. Another generic display is a trim
display that allows specification of trim type and trim
constraints. The default trim type adjusts the angle of
attack and stick inputs to trim the aircraft for level flight
at the selected airspeed. Other generic displays allow the
user to select customized pilot inputs, set up disturbance
models, monitor cockpit input/output, look at timing, or
initialize data recording and playback.

Two flexible displays are the strip-chart and
multivariable displays. These display pages allow the
user to view or modify any simulation parameter from
the variable list. The strip-chart page was designed
specifically to provide a user interface to strip-chart
recorders (fig. 4). The variables to be output to the strip
charts can be selected on this page; their values can be
changed; and the minimum and maximum values for
scaling can be specified. The multivariable page is a
generic display that allows a maximum of 36 simulation
parameters to be specified on one page. These displays
contain a feature that allows the user to save the setup to
a file so it can be recalled during later simulation
sessions.
5

Figure 3. Sample simulation display.

Figure 4. Simulation strip-chart display.
In addition to display and scripting commands, other
commands can be entered from any display page. The
simulation mode can be changed by entering the reset,
hold, or operate commands. A “dump” or “copy”
command sends the current display to a line printer or a
file, respectively.

In conjunction with the FORTRAN background
executive program, a C-language GUI is used. The toolkit
for this GUI was developed at NASA Dryden in 1989 and
is based on low-level X-library calls. Currently, an effort
is being made to use a more standardized GUI to take
advantage of the commercial GUI builders that are
available.
6

Figure 5 shows a representative GUI interface for the
X-31 simulation. The main simulation display window is
shown on the bottom left with the command line along
the bottom. The window shown on the bottom right
provides point-and-click user control and a mouse-
driven cockpit for pilot-stick, rudder-pedal, and throttle
inputs. A log window, shown on the upper left, was
recently added to make the simulation user friendly. User
commands are echoed in the log window, and errors,
warnings, and notices are posted to provide feedback to
the user. The window shown on the upper right shows the
graphics capability that will be described in the “Three-
Dimensional Solid Model Graphics” subsection.

The code for the background executive is usually the
same for batch-mode, real-time pilot-in-the-loop, and
flight hardware-in-the-loop simulation; however, various
displays may be inactive in some cases. For example,
during hardware-in-the-loop simulation using the flight
control computers, the control system display is not
used when internal control system information is not
available.

Real-Time Loop

All the simulation model calculations and integration
of the equations of motion are performed in the real-time
loop. For pilot-in-the-loop or hardware-in-the-loop
simulation, the main real-time task is interrupt-driven at
the highest allowable system priority. Any additional
real-time programs may be synchronized with memory
flags or run at their own required frame rate. Computers
with multiple central processing units are used for real-
time operation to ensure timing constraints are met. In
batch-mode simulation, the real-time loop normally runs
as fast as it can with round-robin scheduling performed
by the UNIX kernel.

As in most simulations, three modes exist: reset, hold
(or freeze), and operate. One aspect of the NASA Dryden
simulation that should be emphasized is that all the
model code is executed even while in reset mode. Some
reinitialization is performed, but the simulation runs
through the dynamics and control system code as if the
simulation were in the operate mode (fig. 6). The main
7

Figure 5. Simulation graphical user interface.

difference is the aircraft states are not integrated. This
method has proved valuable in debugging. Execution in
reset mode also allows the aircraft, in a sense, to fly to
new initial conditions as they are selected on the initial
conditions page. For the X-31 hardware-in-the-loop
simulation, the aircraft states were ramped to the new
initial conditions to prevent tripping the redundancy
management. The simulation may be placed in the hold
mode to freeze the current conditions. This feature
facilitates debugging and analysis.

Figure 6. Real-time loop flow chart.

The NASA Dryden simulation uses an integration
scheme that has been optimized for real-time operation.
This method differs from the classical second-order
Runge-Kutta method in that the derivatives are only
calculated once for each frame. Therefore, the simulation
is able to run at high frame rates, and the performance is
still superior to first-order methods. As shown in the
integration code (appendix A), a weighted average of the
midpoint and previous frame derivative is used to predict
the derivative at the end of the frame.

Most NASA Dryden simulations contain the ability to
vary the integration interval while the simulation is
running. The dynamic filter and rate calculations are
coded to incorporate this ability. This feature was
originally included to allow the developer to easily adjust
the simulation frequency to prevent frame overruns. The
feature also facilitates faster-than-real-time simulation.
Research has shown that faster-than-real-time simulation
practice can improve pilot performance during high gain
tasks.3 Varying the frame rate also proved useful during
NASP simulation studies, allowing the aircraft to quickly
fly a mission profile by accelerating the operation of the
least dynamic phases.

In most cases, flat-Earth six-degree-of-freedom
equations of motion are used. Oblate-Earth equations of
motion were developed for the space shuttle simulation
and later used in the NASP and follow-on simulation
studies. The flat- and oblate-Earth equations of motion
use a hybrid axis system that allows forces and moments
to be added in the axis systems for which they
are commonly computed, thus reducing axis
transformations.

Generally, these equations of motion are simplified by
assuming aircraft symmetry about the x-z plane so that
the inertial terms “Ixy” and “Iyz” are 0 slug-ft2. However,
this assumption is invalid for some aircraft, such as the
AD-1 Oblique Wing airplane and the F-16XL airplane
with the supersonic laminar flow glove on the left wing.
In these aircraft, all inertial terms are included.
Additional flexibility is provided with flags that can be
set to restrict some of the degrees of freedom. For
example, the simulation can be set up to allow only
longitudinal or lateral–directional motion.

Like the background executive, the code for the
real-time loop is kept consistent between batch-mode,
real-time, and hardware-in-the-loop simulation. Flags
are set during initialization to indicate in which mode the
simulation is to operate. These flags are then used to
determine which sections of code are executed in the
real-time loop.

Wait for
interrupt

Cockpit
input

Control
system

Reset
?

Set
initial states

Autotrim

Hold
?

Operate
?

Aircraft
models

Integrate
aircraft states

Equations
of motion

Cockpit
output

Update
graphics

Record
simulation data

Yes

Yes

No

No

Yes

No

950255
8

Model Development

Using the software structure described in the
preceding section, implementation of a new aircraft
simulation is a rapid process. Depending on model
availability, simple simulations (such as Perseus) can be
ready for the user in as little as 2 weeks. More complex
simulations with flight hardware in the loop (such as the
X-31) require approximately 9 months to develop.4

Development usually begins by copying the most
current simulation software and replacing all the aircraft-
specific models. Normally, this process requires math
models for the aerodynamics, propulsion system, control
laws, and actuator dynamics. In most cases, additional
models are required. For example, the F-18 HARV and
X-31 aircraft require thrust-vectoring models to
determine moments provided by the thrust-vectoring
systems.

Data Files

Models that require large data tables are initialized by
reading data files at startup. This method allows the
database to be changed without requiring recompilation.
An added feature is a file display page that allows the
database to be modified during a simulation session. For
example, the user can type in the new file name for the
aerodynamic database, and the background executive
will read the new file and copy that data into the
appropriate common block. Because the real-time loop is
using the data values in the shared common region, this
change is incorporated immediately.

Because the data for different simulations and
different models come from a variety of sources and
disciplines, the data formats will vary significantly.
Therefore, a unique input subroutine is written for each
data file.

Table Look-Ups

Many simulation models, especially most
aerodynamic models, include large, multidimensional
table look-ups. A common approach is to develop a
generic set of library routines to perform the table look-
up function. The disadvantage to this approach is that the
overhead required to make these subroutine calls can be
unacceptable in a real-time environment. Therefore,
NASA Dryden usually uses custom-coded table look-up
routines for each project.

Because this approach could be prohibitive in the cost
of development time, a table look-up code generator was

developed in the late 1970s to support the space shuttle
simulation. This program produces complete FORTRAN
table look-up code for functions of a maximum of 9
independent variables by reading files that describe the
variable dependencies and breakpoint structure.
Considering the number of simulations and
modifications that are supported at NASA Dryden, this
table look-up code generator is a crucial time saver. For
example, the table look-up code for the X-31 simulation
(225,000 data points and 200 dependent variables of a
maximum of 5 dimensions) was generated and verified
in 2 work weeks.

The table look-up code generator output is maximized
for performance. When several parameters are functions
of the same variable with identical breakpoint values, the
table indices and interpolation ratios are calculated once
and shared. Breakpoint values and deltas are hard-wired
in the code to minimize array accessing. The style of the
code and the type of array indexing can be selected by
the user to optimize performance on a given platform.
This approach results in more efficient code than using a
generic set of library routines to perform each table
look-up.

One innovation incorporated in the table look-up code
generator is an especially efficient means of handling
unevenly spaced breakpoints. Evenly spaced breakpoints
offer speed of execution because table indices can be
directly computed and the breakpoint interval is fixed
and known. Unevenly spaced breakpoint table look-ups
are not as straightforward. Classical approaches include
consecutive “IF” tests, binary searches, and schemes that
retain the last position in the table or assume that no more
than one breakpoint boundary will be crossed for each
simulation frame. The logic involved in determining the
indices and the calculation of the breakpoint intervals all
act to slow down execution.

The NASA Dryden approach for table look-ups with
unevenly spaced breakpoints is to create an evenly
spaced breakpoint array that is a superset of the unevenly
spaced points (fig. 7). The index into this evenly spaced
array can be directly computed. This index is then used
in an equivalent breakpoint index array that provides
pointers to the appropriate interpolation equation.
Admittedly, the evenly spaced array may contain many
elements, but overall memory requirements are little
changed because the actual data tables are not affected.
Execution speed almost matches that for an evenly
spaced breakpoint table look-up. Appendix B shows
sample code produced by the code generator for a one-
dimensional table look-up using this method.
9

Block Diagram Coding

Aircraft models, particularly control systems, are
commonly described and documented using block
diagrams. NASA Dryden developed a standard method
for implementation of block diagrams so that the
resulting simulation code is easy to read, verify, and
modify. A standard naming convention is used, and each
block is uniquely named so that the code and diagram
can be cross-referenced.

To implement block diagrams, each block is numbered
sequentially. Then, the relationship between the input(s)
and output(s) for each block is defined. All gains, limits,
filter values, and other constants are initialized once from
the background executive and stored in common blocks.
This method allows these values to be modified by the
user during simulation execution without recompilation.

Normally, the block inputs and outputs are also stored
in common blocks. This method is extremely useful for
diagnosing problems because each intermediate value
can then be monitored or recorded. The naming
convention for these variables begins with a one- or two-
character identifier (for example, “P” for the pitch axis),
is followed by the block number, and ends with a label
indicating the variable type (input, output, gain, filter
coefficient, and so forth). Coding the block diagrams in
a consistent manner facilitates development and
debugging.

Because one main NASA Dryden simulation activity
involves the design and testing of control systems, this
implementation approach has proved invaluable. The
controls engineer is able to modify portions of the
control system (gains, filters, limits) while in real time,
make test runs, and evaluate results without having to
stop the simulation and recompile. The intermediate
values from any point in the block diagram can be

monitored and recorded to help quickly identify
problems in the system. This capability makes the most
efficient use of simulator time.

Because block diagrams are currently implemented by
the simulation engineer by hand, this implementation
step is more efficient with a block-diagram code
generator. Although many commercial products are
available for this purpose, maintaining the NASA
Dryden coding method was desirable. Therefore, the
method used in the NASA Dryden simulations has
recently been incorporated into a block-diagram code
generator developed under contract. This code generator
also automatically provides system documentation as
well as block-level testing. For example, gain schedules
and filter frequency responses are plotted.

Simulation Capabilities

Several capabilities have been developed for the
NASA Dryden simulation software to enhance its ability
to support flight research. These capabilities are
implemented in each simulation based on project
requirements.

Real-Time Recording and Monitoring

Real-time recording of time history data is an
important feature of the simulation for debugging and
analysis. Any variable in FORTRAN common can be
selected and recorded at the simulation frame rate. The
signal list for recording is specified in an ASCII data file
that can be modified and reinitialized during a simulation
session. A set of standard NASA Dryden data formats
referred to as “GetData” formats exists.5 These ASCII
and binary formats are used for storing simulation data
and flight data. Using common formats allows a common
set of plotting and analysis tools to be used for
simulation and postflight analysis.
10

Figure 7. Unevenly spaced breakpoint scheme.

–10.0 –7.5 –5.0 –2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

–10.0 0.0 2.5 5.0 7.5 10.0 15.0 20.0 25.0

1 1 1 1 2 3 4 5 6 6 7 7 8 8 8

Unevenly
spaced

 breakpoints

Evenly spaced
superset

Equivalent
breakpoint

index

These values are used in
 DATA statement (Appendix B) 950256

Monitoring of simulation data varies. Various
simulation display pages are continually updated;
however, more specialized and graphical displays are
often needed. This requirement led to the development of
a software toolkit for monitoring the simulation. This
library allows a variety of stand-alone programs to
access simulation data and provide custom displays.
Variables are selected in a monitoring list and output in a
buffering scheme implemented in shared memory. These
stand-alone programs range from software strip charts to
real-time displays of a three-dimensional aircraft and its
flight trajectory. Many of the displays that run in the
control room during an actual flight can also be run in the
simulation laboratory during a simulation session.

Simulation Control Panel

The NASA Dryden real-time simulations are designed
for single-user operation. For this purpose, a convenient
simulation control panel with an array of lighted
pushbuttons is provided with each simulation cockpit.
Figure 8 shows a typical fixed-base cockpit with the
adjacent simulation control panel. This control panel
allows the pilot or engineer to select simulation options
from within the cockpit and provides feedback with
lights to indicate mode selection. The values for all the
options that can be controlled from the panel are retained
in software. A toggle switch is also provided.

Using the simulation control panel buttons in
conjunction with the toggle switch allows the pilot to
alter any of the initial conditions for the aircraft state. For

example, the pilot can push the “reset” button to select
reset mode, then push the “altitude” button and adjust the
initial altitude by moving the toggle switch up or down
and holding it until the desired altitude has been reached.
Then the pilot pushes the “operate” button to fly from the
new condition.

In addition to modifying initial conditions and
changing the simulation mode, other options can be
controlled from the simulation control panel. One of the
pushbuttons is used to start and stop the strip-chart
recorders. Another pushbutton is used in conjunction
with the toggle switch to adjust the volume for the
cockpit sound system. Buttons are provided to modify
the graphics viewpoint, inject customized pilot inputs,
change control system modes, and insert system failures.

Alternate Pilot Inputs

For testing purposes in batch-mode and real-time
simulation, the user can specify substitutes for pilot
inputs by setting up customized inputs on one of the
generic simulation displays. A data file with the pilot
input information can also be provided.

Several signals can be inserted in the pilot-command
path. A generic display is provided in each simulation,
allowing the user to select the shape, duration, and
amplitude of the signal. For example, a square, sawtooth,
or ramped pulse or doublet can be used for the pitch-
stick, roll-stick, rudder-pedal, or throttle inputs. The user
can specify the time to start the input, change direction
11

Figure 8. Simulation control panel.

for the doublet, and remove the input. Standard
frequency sweeps are selected with the sine wave option.

Specialized Schroeder or Chirp functions are also
available.6,7 These functions are frequency sweeps that
use different methods to compute the sweep based on the
frequency content specified by the user. As an added
feature, any of the above inputs can be superimposed on
the control law commands or surface positions to
facilitate frequency response or failure analysis.

A time history file can also be used to substitute for
pilot inputs to the simulation. Because the pilot inputs
during an actual flight are normally recorded, these same
inputs can be played back in the simulation. Therefore, a
comparison can be made between simulation and flight
data for identical maneuvers. This method is frequently
used to provide clues to improving the fidelity of the
simulation models.

Automated Testing

Because verification and validation normally involve a
lot of repetition, most of the NASA Dryden simulations
include an automated testing capability. This feature was
developed to allow repeatable tests to be performed
without requiring a pilot or engineer. Script files are
generated to perform multiple tests in succession and
record the data.

The automated test capability includes a suite of test
functions such as frequency sweeps, steps, biases, and
multipliers. The type, shape, amplitude, and timing for
these functions can be selected on the automated testing
display. Several hooks are provided in the software to
specify where these functions can be injected. For
example, the input/output to the cockpit or control laws
can be specified. This capability provides a consistent
mechanism for failure insertion and mode switching
during testing.

Atmospheric Disturbance Models

Disturbance models for winds, gusts, and turbulence
are included in the simulation structure. These basic
models are normally adequate for most simulation
studies. The gust and turbulence models are
implemented to calculate body-axis velocities. The gust
model allows the user to include a gust along any body
axis. The amplitude and frequency can be changed as
required. The gust has a standard shape of 1 – cos. The
simulation uses the Dryden form of the turbulence model
defined in military specifications.8 These models provide
the researcher with the ability to assess the basic aircraft
response to gusts and turbulence.

The wind model is implemented as a table look-up for
wind magnitude and direction based on altitude. A user-
defined time to ramp in the winds also exists. The wind
velocities are added to the inertial velocities. The
dynamic effects on the aircraft are modeled by adding an
increment to angle of attack, angle of sideslip, and
velocity based on the change in wind velocities for
successive simulation frames. For example, the effect of
flying the aircraft into a wind shear can be observed by
ramping in a vertical wind component.

The more comprehensive Global Reference
Atmospheric Model (GRAM) was implemented in real
time for the NASP project.9 However, the computational
requirements are currently too high to include this model
in every simulation.

Aerodynamic Model Modification

To facilitate improving the simulation fidelity, a
feature referred to as the “delta aero” capability is
included in several NASA Dryden simulations. This
feature gives the user the ability to include increments or
multipliers on the various components of the
aerodynamic model. These modifiers are implemented
as multidimensional tables with varying breakpoints.
Normally, this capability is used in conjunction with
flight data played back through the simulation. When the
simulation response differs from the aircraft response to
the same inputs, this difference can often be traced to
inaccuracies in the aerodynamic modeling.

The “delta aero” capability allows quick changes to be
made to the aerodynamic model in the simulation. This
capability was used to perform parametric studies with
the space shuttle simulation to determine how much
uncertainty could be tolerated in the aerodynamic
modeling. Recently, the “delta aero” tables were used to
adjust the X-31 aerodynamics and simulate a quasi-
tailless aircraft to ensure the control laws could correct
for the reduced directional stability.

Three-Dimensional Solid Model Graphics

Each of the piloted simulations has a visual scene that
is displayed on either a cathode ray tube display or large
projection screen in front of the cockpit. In addition to an
out-the-window view of the local Edwards Air Force
Base runways, a three-dimensional solid-model view of
the aircraft is included (fig. 9). This graphics option is
selectable from the simulation control panel and allows
the researcher to view a dynamic model of the aircraft
while flying the simulation. The solid model includes
moving control surfaces as well as a three-dimensional
velocity vector representation. The velocity vector
12

originates from the aircraft center of gravity, and its
length gives a relative indication of the aircraft velocity.
A two-dimensional plane is displayed at the end of the
velocity vector to indicate angles of attack and sideslip.
Different colors are used for positive and negative angles
of sideslip.

The ability to display the three-dimensional solid
model was originally developed to allow visualization of
aircraft motion during high-angle-of-attack maneuvers.
This capability has also proven valuable for analyzing
flight incidents. Researchers were able to gain insight
into the X-29 departure from controlled flight by
replaying flight data through this graphics program.

Distributed Systems

The NASA Dryden real-time simulations make
extensive use of distributed systems. The simulations are
designed to operate on most UNIX-based computers.
Separate VME-based equipment is used for the analog
and discrete interfaces to the simulation cockpit or to
flight hardware. The simulation communicates to these
systems using high-speed VME-to-VME shared memory
devices.

The fixed-base simulation cockpits use an
electromechanical stick and rudder pedal assembly to
provide the required force-feel characteristics for the
pilot. This interface is controlled by the Simulation

Electric Stick (SES) software. A cockpit interface unit
has been developed to process the remaining analog and
discrete information going to and from the simulation
cockpit. These programs are configured using software.
A single ASCII file is used to set up memory locations
for the data and to provide scaling information about the
cockpit instruments, control stick, rudder pedals, and
throttle(s). An additional central processing unit and
sound board can be included in the VME card cage to
provide cockpit sounds.

A simulation interface device was developed for
interfacing the simulation to flight hardware. In addition
to signal conditioning, this system provides circuit
protection in both directions to prevent damage to either
the flight hardware or the simulation computer. The
simulation interface device was used for both the X-29
and F-18 HARV hardware-in-the-loop simulations.

Linear Model Output

Inclusion of a linearization capability has greatly
enhanced the simulation as a powerful tool for flight
research. Several output options are available that write
the linearized matrices to files that are directly
compatible with the various linear analysis tools in use at
NASA Dryden. The linearization generates matrices for
the state equation and output
equation , where x and u are the state
vector and control vector, respectively. In addition,

ẋ A[]x B[]u+=
y C[]x D[]u+=
13

Figure 9. Three-dimensional solid model.

derivatives for the nondimensional aerodynamic
coefficients are generated automatically for the same
states and control surfaces.

The linearization will generate linearized matrices for
any flight condition. The user can trim the aircraft to any
initial condition in reset mode or place the simulation in
hold during maneuvering. When the linearization option
is selected from the linearization display page, the
simulation immediately calculates the linearized
matrices for the current aircraft state. These matrices are
displayed on the linearization page and can be written to
a file if desired, or the display pages can be fed directly
to the printer. Scripts can be used to rapidly generate
linear matrices for a large number of conditions. These
matrices can then be used by linear analysis tools to
provide quick safety-of-flight analysis.

Concluding Remarks

The NASA Dryden Flight Research Center has
developed a flexible simulation software package that is
capable of quickly and efficiently supporting flight
research requirements and conceptual vehicle studies.
The software and its inherent features have evolved

through decades of experience with fixed-wing aircraft,
including X aircraft, high-performance fighters,
transport aircraft, sailplanes, and hypersonic vehicles.
The same structure supports batch-mode, real-time pilot-
in-the-loop, and flight hardware-in-the-loop simulation.

Capabilities such as linearization, the “delta aero”
model, and automated testing with scripts provide
researchers with the tools needed to quickly assess flight
safety issues, make parametric and sensitivity studies,
and perform verification and validation testing. The
simulation graphics provide the pilot with visual cues
and include a three-dimensional model to give
researchers a keen understanding of the aircraft motion.

The NASA Dryden simulation is effective, capable,
and easy to use. The system can be operated by a single
individual through the use of the simulation control
panel, keyboard entry, and mouse input. Ready access to
simulation parameters and a flexible command line
interface enhance the productivity of a typical simulation
session. This simulation structure is used at other NASA
centers, within industry, and at several universities and is
available to qualified organizations.
14

APPENDIX A

Simulation Integration Method

SUBROUTINE INTG
C
C.... ROUTINE FOR NUMERICAL INTEGRATION. THIS ALOGRITHM IS THE
C RESULT OF MODIFYING A 2ND ORDER RUNGE-KUTTA ALGORITHM BY
C REMOVING THE SECOND DERIVATIVE EVALUATION AND REPLACING IT
C WITH A PREDICTION OF THE DERIVATIVE BY A WEIGHTED AVERAGE
C OF THE PREVIOUS END-FRAME AND MID-FRAME VALUES.
C

IMPLICIT NONE

INTEGER I
REAL*4 DF(13)
REAL*4 DQQ(13)
REAL*8 F(13)
REAL*8 QQ(13)
LOGICAL LWEIGHT /.TRUE./

REAL*8 T,P,Q,R,V,ALP,BTA,THA,PHI,PSI,H,X,Y
REAL TDOT,PDOT,QDOT,RDOT,VDOT,ALPDOT,BTADOT,
. THADOT,PHIDOT,PSIDOT,HDOT,XDOT,YDOT
COMMON /DRVOUT/T,P,Q,R,V,ALP,BTA,THA,PHI,PSI,H,X,Y,
. TDOT,PDOT,QDOT,RDOT,VDOT,ALPDOT,BTADOT,
. THADOT,PHIDOT,PSIDOT,HDOT,XDOT,YDOT
INTEGER NEQN ! NUMBER OF INTEGRANDS
REAL HI,H2 ! HI = SIM FRAME TIME
COMMON /INGDAT/ NEQN,HI,H2 ! H2 = HI/2

C
EQUIVALENCE (F(1),T), (DF(1),TDOT)

C
C.... SAVE CURRENT INTEGRAND AND DERIVATIVE VALUES. INTEGRATE TO
C FRAME MID-POINT USING DERIVATIVE VALUES FROM END OF PREVIOUS
C FRAME.
C
 DO I=1,NEQN

 QQ(I) = F(I)
 DQQ(I) = DF(I)
 F(I) = F(I) + H2*DF(I)
ENDDO

C
C.... EVALUATE DERIVATIVES AT MID-POINT.
C

CALL DERIVC
C
C.... INTEGRATE FROM BEGINNING TO END OF FRAME USING DERIVATIVE
C VALUE DETERMINED AT MID-POINT. PREDICT DERIVATIVE VALUE
C AT END OF FRAME USING WEIGHTED AVERAGE OF PREVIOUS END-POINT
C AND MID-FRAME DERIVATIVE VALUES.
C

DO I=1,NEQN
 F(I) = QQ(I) + HI*DF(I)
 IF(LWEIGHT) DF(I) = 1.5*DF(I) - 0.5*DQQ(I)
ENDDO

C
RETURN
END
15

APPENDIX B

Table Look-Up Code for Uneven Breakpoints

SUBROUTINE TLU
C
C.... WRITTEN 03/10/95 15:55:30 BY THE CODE GENERATOR
C PROGRAM 'LOOKUP, REV 1.9 ' NASA/DFRC
C

DIMENSION NALP9(15)
C

REAL ALPDEG
C

REAL CLA,CLAA
COMMON / ARODAT/ CLA,CLAA(9)
REAL*8 T,P,Q,R,V,ALP,BTA,THA,PHI,PSI,H,X,Y
COMMON / DRVOUT/ T,P,Q,R,V,ALP,BTA,THA,PHI,PSI,H,X,Y,
. TDOT,PDOT,QDOT,RDOT,VDOT,ALPDOT,BTADOT,
. THADOT,PHIDOT,PSIDOT,HDOT,XDOT,YDOT

C
DATA NALP9 / 1, 1, 1, 1, 2, 3, 4, 5, 6, 6, 7, 7, 8, 8, 8 /

C
ALPDEG = ALP * 57.29578 ! ANGLE OF ATTACK IN DEGREES

C
C.... COMPUTE INDEX OF GREATEST LOWER BOUND BREAK-POINT
C AND INTERPOLATION RATIO FOR EACH INDEPENDENT VARIABLE.
C
C.... ALP9 : UNEVENLY SPACED, 'COMPUTED-GO-TO'
C LIMIT WITHIN TABLE BOUNDARY
C BRK PTS:-10.0 0.0 2.5 5.0 7.5
C 10.0 15.0 20.0 25.0
C DEP VAR:CLA
C
 IF(ALPDEG.LE.-.100000E+02) THEN

IALP9= 1
 RALP9=0.0
C
 ELSEIF(ALPDEG.GE.0.250000E+02) THEN

IALP9= 8
 RALP9=1.0
C
 ELSE
 ALP9X=ALPDEG
C
 IB =ALP9X*0.400000E+00 +0.500000E+01
 IALP9=NALP9(IB)
C
 GO TO (101, 102, 103, 104, 105, 106, 107, 108),IALP9
C

101 RALP9=(ALP9X+ .100000E+02)*0.100000E+00
GO TO 109

102 RALP9=(ALP9X)*0.400000E+00
GO TO 109

103 RALP9=(ALP9X-0.250000E+01)*0.400000E+00
 GO TO 109

104 RALP9=(ALP9X-0.500000E+01)*0.400000E+00
GO TO 109

105 RALP9=(ALP9X-0.750000E+01)*0.400000E+00
GO TO 109
16

106 RALP9=(ALP9X-0.100000E+02)*0.200000E+00
GO TO 109

107 RALP9=(ALP9X-0.150000E+02)*0.200000E+00
GO TO 109

108 RALP9=(ALP9X-0.200000E+02)*0.200000E+00
C

109 CONTINUE
 ENDIF
C
C.... CLA --> FCT(ALP9)
C

CLA = RALP9*(CLAA(IALP9+1)-CLAA(IALP9)) + CLAA(IALP9)
C
 RETURN
 END
17

References

1 Smith, John P., Schilling, Lawrence J., and Wagner,
Charles A., Simulation at Dryden Flight Research
Facility From 1957 to 1982, NASA TM-101695, 1989.

2 Binkley, Robert L. and Mackall, Dale, System
Overview of the NASA Dryden Integrated Test Facility,
NASA TM-104250, 1992.

3 Guckenberger, Dutch, Uliano, Kevin C., Lane, Norman
E., and Stanney, Kay, “The Effects of Above Real-Time
Training (ARTT) on Three Tasks in an F-16 Part-Task
Simulator,” 15th Interservice/Industry Training Systems
and Educational Conference Proceedings, Nov. 1993,
pp. 99–108.

4 Mackall, Dale, Norlin, Kenneth, Cohen, Dorothea,
Kellogg, Gary, Schilling, Lawrence, and Sheen, John,
Rapid Development of the X-31 Simulation to Support
Flight-Testing, NASA TM-104256, 1992.

5 Maine, Richard E., Manual for GetData Version 3.1: A
FORTRAN Utility Program for Time History Data,
NASA TM-88288, 1987.

6 Young, Peter and Patton, Ronald J., “Comparison of
Test Signals for Aircraft Frequency Domain
Identification,” Journal of Guidance, Control, and
Dynamics, vol. 13, no. 3, May–June 1990, pp. 430–438.

7 Rabiner, L. R., “Chirp z-Transform Algorithm
Program,” Programs for Digital Signal Processing,
IEEE Acoustics, Speech, and Signal Processing Society,
1979, pp. 1.6-1–1.6-13.

8 U. S. Government, Flying Qualities of Piloted
Airplanes, MIL-F-8785C, Nov. 1980.

9 Justus, C. G., Alyea, F. N., Cunnold, D. M., Jeffries, W.
R. III, and Johnson, D. L., The NASA/MSFC Global
Reference Atmospheric Model—1990 Version
(GRAM-90), Part I: Technical/Users Manual, NASA
TM-4268, 1991.
18

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

6. AUTHOR(S)

8. PERFORMING ORGANIZATION
REPORT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Flight Simulation Software at NASA Dryden Flight Research Center

WU 505-68-81

Ken A. Norlin

NASA Dryden Flight Research Center
P.O. Box 273
Edwards, California 93523-0273

H-2052

National Aeronautics and Space Administration
Washington, DC 20546-0001 NASA TM-104315

The NASA Dryden Flight Research Center has developed a versatile simulation software package that is applicable to a
broad range of fixed-wing aircraft. This package has evolved in support of a variety of flight research programs. The
structure is designed to be flexible enough for use in batch-mode, real-time pilot-in-the-loop, and flight hardware-in-the-
loop simulation. Current simulations operate on UNIX-based platforms and are coded with a FORTRAN shell and
C support routines. This paper discusses the features of the simulation software design and some basic model
development techniques. The key capabilities that have been included in the simulation are described. The NASA Dryden
simulation software is in use at other NASA centers, within industry, and at several universities. The straightforward but
flexible design of this well-validated package makes it especially useful in an engineering environment.

Flight simulation; Simulation software
AO3

21

Unclassified Unclassified Unclassified Unlimited

October 1995 Technical Memorandum

Available from the NASA Center for AeroSpace Information, 800 Elkridge Landing Road,
Linthicum Heights, MD 21090; (301)621-0390

Prepared for the American Institute of Aeronautics and Astronautics Flight Simulation Technologies
Conference, Baltimore, Maryland, Aug. 7–10, 1995.

Unclassified—Unlimited
Subject Category 05

	Cover Page
	Title Page
	Abstract
	Introduction
	Nomenclature
	Software Design
	Background Executive
	Real-Time Loop

	Model Development
	Data Files
	Table Look-Ups
	Block Diagram Coding

	Simulation Capabilities
	Real-Time Recording and Monitoring
	Simulation Control Panel
	Alternate Pilot Inputs
	Automated Testing
	Atmospheric Disturbance Models
	Aerodynamic Model Modification
	Three-Dimensional Solid Model Graphics
	Distributed Systems
	Linear Model Output

	Concluding Remarks
	Appendix A - Simulation Integration Method
	Appendix B - Table Look-Up Code for Uneven Breakpoints
	References
	Report Documentation Page

